The South African Mathematical Olympiad Third Round 2007

Senior Division (Grades 10 to 12)

Time: 4 hours

(No calculating devices are allowed)

- 1. Determine whether $\frac{1}{\sqrt{2}} \frac{1}{\sqrt{6}}$ is less than or greater than $\frac{3}{10}$.
- 2. Consider the equation $x^4 = ax^3 + bx^2 + cx + 2007$, where a,b and c are real numbers. Determine the largest value of b for which this equation has exactly three distinct solutions, all of which are integers.
- 3. In acute-angled triangle ABC, the points D, E and F are on sides BC, CA and AB, respectively, such that $\widehat{AFE} = \widehat{BFD}$, $\widehat{FDB} = \widehat{EDC}$ and $\widehat{DEC} = \widehat{FEA}$. Prove that AD is perpendicular to BC.
- 4. Let ABC be a triangle and PQRS a square with P on AB, Q on AC and R and S on BC (possibly extended). Let H be on BC (possibly extended) such that AH is the altitude of the triangle from A to the base BC. Prove that:
 - (a) $\frac{1}{AH} + \frac{1}{BC} = \frac{1}{PO}$;
 - (b) the area of ABC is twice the area of PQRS if and only if AH = BC.
- 5. Let $\mathbb Z$ and $\mathbb R$ denote the sets of integers and real numbers, respectively. Let $f:\mathbb Z\to\mathbb R$ be a function satisfying:
 - (i) $f(n) \geqslant 0$ for all $n \in \mathbb{Z}$;
 - (ii) f(mn)=f(m)f(n) for all $m,n\in\mathbb{Z};$
 - (iii) $f(m+n) \leqslant \max\{f(m),f(n)\}\ \text{for all}\ m,n \in \mathbb{Z}.$
 - (a) Prove that $f(n) \leq 1$ for all $n \in \mathbb{Z}$.
 - (b) Find a function $f: \mathbb{Z} \to \mathbb{R}$ satisfying (i), (ii) and (iii) that also satisfies 0 < f(2) < 1 and f(2007) = 1.
- 6. Show that it is not possible to write the numbers 1, 2, ..., 25 on the squares of a 5×5 chess board (one number per square) such that any two neighbouring numbers differ by at most 4. (Two numbers are neighbours if they are written on squares that share a side.)